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This article introduces a novel method for targeting complex networks that involves using a hybrid central-
ity score to rank nodes and carry out attacks. Unlike previous studies that have focused on using individual
centrality measures, this approach takes into consideration the varying significance of nodes across dif-
ferent centrality measures. The study utilizes simulations on scale-free networks to demonstrate that the
proposed strategy can be highly effective in inducing network failure, and certain combinations of cen-
trality measures can result in greater attack severity than using individual measures alone. Overall, the
research offers valuable insights into improving node-attack strategies for complex networks, which are
typically resilient to random failures but susceptible to targeted attacks.

Keywords: complex networks; node-attack strategy; central attacks; hybrid centrality; largest connected
component; attack severity.

1. Introduction

Complex networks are ubiquitous in various fields, such as biology, social sciences and transportation
systems [1–10]. These networks are characterized by their complex structures, high connectivity and
resilience to random failures [11]. However, they are vulnerable to targeted attacks, such as node or link
removal, which can cause significant damage or even collapse. Thus, understanding the nature of effective
node-attack strategies is essential for maintaining the robustness and security of complex networks [12].
In recent years, many studies have investigated the importance of nodes in complex networks, and various
centrality measures have been proposed to quantify a node’s significance [13, 14]. However, most of these
studies have focused on individual centrality measures, which may not accurately reflect a node’s overall
importance across different measures. Therefore, it is necessary to explore the idea of using a combination
of centrality measures to rank nodes and perform attacks accordingly [15].

In this research article, we propose a novel node-attack strategy that utilizes a specific convex com-
bination of three centrality measures, namely degree centrality, betweenness centrality and closeness
centrality. We aim to investigate the effectiveness of our suggested strategy through simulations on scale-
free networks. By modifying the coefficients in the convex combination, we examine the impact of our
proposed node-attack strategy and compare it with attacks based on individual centrality measures.

© The authors 2023. Published by Oxford University Press. All rights reserved.
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2 P. B. DIVYA ET AL.

Our findings suggest that certain combinations of centrality measures result in higher severity than
individual centrality points, demonstrating the effectiveness of convex combination of centralities on
scale-free networks. Our study provides insights into optimizing node-attack strategies in complex net-
works, which can aid in enhancing the robustness and security of various systems that rely on these
networks.

2. Related literature

In recent years, the study of attacks in complex networks has gained significant attention due to its impli-
cations in various real-world scenarios [4–6, 8, 16, 17]. Researchers have investigated the robustness and
vulnerability of complex networks under different types of attacks, including targeted attacks and central
attacks [18–24]. Targeted attacks aim to exploit specific vulnerabilities within a network by targeting its
most critical nodes or edges. Central attacks, a specific type of targeted attack, focus on compromising the
network’s most central nodes, potentially causing significant disruptions to the network’s functionality
and stability [12, 25].

One approach to identify the most central nodes in a network is through individual centrality mea-
sures [19, 20, 26–29]. These measures include degree centrality, betweenness centrality and eigenvector
centrality, among others. Degree centrality considers the number of connections a node has, while
betweenness centrality accounts for the number of shortest paths that pass through a node. Eigenvec-
tor centrality, on the other hand, considers the importance of the nodes that are connected to a particular
node [14, 30].

However, a single centrality measure may not be enough to capture the complex structure and impor-
tance of nodes in a network. Therefore, researchers have proposed combined centrality measures that
consider multiple centrality measures simultaneously [31]. For instance, Fei et al. [32] suggested com-
bining different centrality measures by calculating the median of a node’s maximum and minimum ranks
induced by a given set of centrality measures. Meanwhile, Zhang et al. [33] used a combination of
betweenness centrality and Katz centrality to evaluate node importance.

One more general approach is introduced by Keng et al. [15] by taking the convex combination
of centralities, which combines different centrality measures with different weights. This approach can
capture the importance of nodes based on different criteria, making it a more comprehensive measure of
node importance.

Overall, these studies demonstrate the importance of considering different types of attacks and cen-
trality measures when analysing the robustness and vulnerability of complex networks. The use of
combined centrality measures, such as the convex combination of centralities, can provide a more accu-
rate and comprehensive measure of node importance, which can aid in developing effective strategies for
defending against attacks in complex networks [15].

In our work, we are trying to explore the significance of combined centrality attacks through attack
simulations on scale free network.

3. Methodology

The major metrics that measure worth of a vertex are the various centrality measures. But, it is noticed
that the role of nodes is different for different centrality measures. So ranking the nodes based on single
centrality measure cannot be justified. For instance, consider the below example analysing the nodes in
the highest positions based on various centralities
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HYBRID CENTRALITY-BASED NODE ATTACKS IN SCALE-FREE NETWORKS 3

Table 1 Rank values and corresponding nodes under DC, BC and CC

Rank DC BC CC

1 6 10 4, 10
2 7 1 6, 9
3 1, 4, 5, 8, 10 4 7, 9
4 2, 3, 9 6 1, 5, 8
5 - 7 -

Fig. 1. An example graph

Table 1 shows the top 5 rank values and their corresponding nodes under degree centrality (DC),
betweenness centrality (BC) and closeness centrality (CC) for the graph shown in Fig. 1.

The relative rankings of the nodes in each of the centrality measures indicate that the importance of
nodes differs depending on the type of centrality measure used. Therefore, it is important to consider
multiple measures of centrality when analysing the importance of nodes in a network.

Keng et al. [15] proposed a convex combination of the centrality measures. Here, we use this idea to
perform attacks and assess its effectiveness. We call it as hybrid centrality index (HCI) which is defined
as :

HCIv = t1c1(v) + t2c2(v) + ..... + tncn(v), (3.1)

where ti is the weight assigned to the ith centrality measure ci, and ci(v) is the normalized centrality
score of vertex v for the ith measure ci. The weights ti satisfy the following conditions:

t1 + t2 + ..... + tn = 1, (3.2)

and

0 ≤ ti ≤ 1, ∀i ∈ {1, 2, ..., n} (3.3)

where n represents the number of different centrality measures being considered in the HCI.
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The normalization of centrality measures ci are done with min–max criteria which re-scales the values
in the range [0,1]. This ensures that the impact of a centrality measure on the final score is proportional
to its relative importance.

The HCI is calculated using different convex combinations of weights ti, where each weight corre-
sponds to a different centrality measure. Once the HCI scores are calculated for all nodes in the graph,
a node removal attack is performed to assess its efficiency. The attack’s effectiveness is measured using
the size of the largest connected component (LCC) after the attack. The results are compared to iden-
tify the weightage combination that provides highest attack severity. The weightage combination that
results in the highest reduction in the size of the LCC is considered the most effective in terms of attack
severity.

The HCI method provides a useful framework for evaluating node importance in a graph by combin-
ing multiple centrality measures and assessing the impact of node removal attacks. This study will provide
insights into the effectiveness of the HCI method and the usefulness of combining multiple centrality
measures for identifying critical nodes in complex networks.

4. Simulation study

The simulation study aims to compare the effectiveness of attacks based on combined centrality measure
(using the HCI method) with those based on individual centrality measures.

For the study, we specifically use a set of three centrality measures: degree centrality, betweenness
centrality and closeness centrality, to capture different aspects of node importance in the network includ-
ing the number of direct connections (degree centrality), the degree to which a node lies on the shortest
paths between other nodes (betweenness centrality), and the speed at which a node can reach other nodes
in the network (closeness centrality) [34].

To evaluate the effectiveness of the HCI method, we perform node removal attack on a scale-
free network, which is a common network structure found in many real-world systems. The analysis
of the attack’s effectiveness is based on the size of the LCC of the network after node removal
[19, 35, 36].

We can summarise the major steps as follows.

4.1 Network generation

The choice of an appropriate network structure is crucial for any simulation study, as it can significantly
impact the validity and relevance of the results. In our study, we chose to use scale-free networks as they
are widely used to model real-world networks, including social networks, the internet and biological net-
works [37–39]. Scale-free networks are characterized by a power-law degree distribution, which means
that the number of nodes with a certain degree follows a power-law distribution, rather than a normal
distribution [37]. It means that a few nodes have a high degree, while most nodes have a low degree. This
heterogeneity in node degrees is commonly observed in many real-world networks and makes scale-free
networks an appropriate choice for simulating such networks. Previous studies have also used scale-free
networks for similar simulation studies, further validating our choice of network structure [19, 40, 41].
Using a scale-free network as the underlying graph structure in our simulation study allows us to bet-
ter capture the complex connectivity patterns and heterogeneity of real-world networks and evaluate the
effectiveness of the HCI method in a realistic network setting.

A widely utilized algorithm for generating scale-free networks is the Barabasi–Albert algorithm [42].
The BA model operates by first initializing with a small set of nodes and then incrementally adding new
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HYBRID CENTRALITY-BASED NODE ATTACKS IN SCALE-FREE NETWORKS 5

nodes to the network. The new nodes are preferentially attached to existing nodes that already have high
degree. At every step, a new node is introduced into the network and is linked to a predetermined number
of existing nodes (specified by parameter m), with the likelihood of linking to a particular node being
proportional to its degree. That is that nodes with more connections are more probable to receive new
links [42]. The study examined four scale-free networks of varying sizes, including 50, 100, 500 and
1000 nodes. The parameter value for each network was fixed at m = 3.

4.2 Calculation of HCI

The HCI score is calculated by computing the relevant centrality measures for each node in the network
and combining them using a weighted sum formula [15]. The centrality measures used in our study are
degree centrality, betweenness centrality and closeness centrality. Hence, we can calculate the HCI score
for each node in the network using the following formula:

HCIv = t1BCv + t2CCv + t3DCv. (4.1)

where

• ti, i = 1, 2, 3 correspond to the weightage of the respective centrality measures.

• BCv is the betweenness centrality of a node v, defined as [43, 44]:

BCv =
∑

s �=v�=t

σst(v)

σst
, (4.2)

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of those
paths that pass through v.

• CCv is the closeness centrality of a of a node v, defined as [44]

CCv = 1∑
u d(u, v)

, (4.3)

where d(u, v) is the shortest distance between u and v.

• DCv is the degree centrality of node v which is the number of edges incident to v [20].

We choose ti values in the range [0,1] with increments of 0.1, such that the sum of all three weightage
values adds up to 1. Using this approach, we can obtain 66 different weightage combinations for the
three centrality measures. Figure 2 shows the list of weightage combinations for the three centrality
measures with S1 denoting degree centrality (DC), S11 denoting closeness centrality and S66 denoting
betweenness centrality.

Once we have identified the weightage values for the three centrality measures, we can calculate the
HCI score for each node in the network using Equation 4.1. Each combination corresponds to a unique set
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6 P. B. DIVYA ET AL.

Fig. 2. List of weightage combinations for the three centrality measures

of weightage values that determines the relative importance of each centrality measure in the calculation
of the overall HCI score.

4.3 Attack Simulation

We employ two types of attack strategies, namely the initial attack and the recalculated attack based on
the HCI score for each weightage combination.

In the initial attack strategy, nodes are first sorted in descending order based on their centrality scores,
and then removed one by one from the highest to the lowest score. The second attack strategy we used is
the recalculated attack, in which the centrality values of the remaining nodes are recalculated after each
node removal iteration. The node list is then sorted based on the updated centrality values, and the next
node to be removed is selected from the top of the list [45].

To ensure the effectiveness of the attack, we considered the residual giant component of the network
in each iteration of the attack [36]. We recorded the size of the LCC of the network after each round of
node removal for each target fraction. To address the issue of ties in the selection of target nodes with
similar HCI scores, we performed multiple attack trials for different network sizes and calculated the
average size of the LCC from the obtained results.
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HYBRID CENTRALITY-BASED NODE ATTACKS IN SCALE-FREE NETWORKS 7

4.4 Severity checking

To compare the severity of attacks using different weightage combinations, we use the severity measure
Vindex. The Vindex is calculated for each weightage combination using the following formula [46]:

Vindex = 0.5 − 1

N

N∑

i=1

LCCi

N
, (4.4)

where,

• N represents the size of the original network

• LCCi represents the size of the LCC in the network after removing the ith node.

It is important to note that the vulnerability index V is derived as the complementary quantity to the
robustness index R, where R is defined as [20]:

R = 1

N

N∑

i=1

LCCi

N
. (4.5)

The robustness index R, which quantifies the network’s resilience to vertex removal, has a range
between 1/N (minimum) and 1

2 (1 − 1/N) (maximum) for any network and method of vertex removal.
Therefore, the vulnerability index V inherits this fixed range and is bounded within the range of 0 to 1

2
[20, 47].

We calculate the Vindex value for each weightage combination and then compare them. The weightage
combination with the highest Vindex value is considered to be the most effective for the attack strategy.

4.5 Result analysis and Discussion

The result analysis process involves creating a scatter plot for each network to compare the severity of
the initial attack and the recalculated attack using hybrid centrality approach with different weightage
combinations. The x-axis represents the weightage of betweenness centrality (t1), and the y-axis repre-
sents the weightage of closeness centrality (t2). Since the weightage of degree centrality (t3) depends on
t1 and t2, its value is evident from the plot even though it is not explicitly represented. The point (0,0)
on the plot represents the individual degree centrality measure, whereas (1,0) represents the betweenness
centrality measure, and (0,1) represents the closeness centrality measure.

The severity of the attacks is indicated by the colour of the scatter points, with the colour bar indicat-
ing the severity levels. The plot provides an easy visualization of the severity of attacks under different
centrality weightage combinations.

Using the plot, we can identify regions where the severity of attacks is high, indicating that the corre-
sponding weightage combination is effective in maximizing the impact of network attacks. Additionally,
we can analyse the distribution of severity values across the plot to identify any clusters or outliers, which
could provide insights into potential vulnerabilities in the network.

Figures 3, 4, 5, 6 illustrates the comparison of severity levels for initial and recalculated attacks on
a scale-free network of sizes 50, 100, 500 and 1000 (SF50, SF100, SF500 and SF1000) using the HCI
scores calculated for 66 weightage combinations.
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8 P. B. DIVYA ET AL.

Fig. 3. Comparison of severity (Vindex) of initial and recalculated attack on SF50 for different weightage combinations

Fig. 4. Comparison of severity (Vindex) of initial and recalculated attack on SF100 for different weightage combinations

Based on the severity plot in Fig. 3, we can observe that the severity level is high for the initial attack
when the weightage is less for closeness centrality. The highest severity occurs at the weightage com-
bination of (0.9, 0.0, 0.1), which implies that the network is highly vulnerable to attacks targeting the
betweenness centrality while minimizing the closeness centrality. Specifically, this weightage combina-
tion emphasizes the importance of degree centrality, with a higher weightage given to the betweenness
centrality over the closeness centrality. The results indicate that attackers can effectively break the SF50
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HYBRID CENTRALITY-BASED NODE ATTACKS IN SCALE-FREE NETWORKS 9

Fig. 5. Comparison of severity (Vindex) of initial and recalculated attack on SF500 for different weightage combinations

Fig. 6. Comparison of severity (Vindex) of initial and recalculated attack on SF1000 for different weightage combinations

network by focusing on the most central nodes with high betweenness centrality while avoiding nodes
with high closeness centrality.

Similar observations were made for the other studied networks as well regarding the severity of the ini-
tial attack. The plots showed that the severity level was high when the weightage for closeness centrality
was low and the weightage for betweenness centrality was high.
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10 P. B. DIVYA ET AL.

Table 2 Top 3 Weightage combinations with the highest severity values (V-index)

Network
Initial attack Recalculated attack

V-index Weightage combination V-index Weightage combination

SF50 0.2376 (0.9, 0.0, 0.1) 0.2696 (0.1, 0.2, 0.7)
0.2364 (0.0, 0.0, 1.0) 0.2696 (0.0, 0.3, 0.7)
0.2348 (0.8, 0.0, 0.2) 0.2692 (0.1, 0.3, 0.6)

SF100 0.2763 (0.0, 0.0, 1.0) 0.3066 (0.3, 0.5, 0.2)
0.2747 (0.7, 0.0, 0.3) 0.3058 (0.2, 0.4, 0.4)
0.2742 (0.1, 0.0, 0.9) 0.3058 (0.2, 0.5, 0.3)

SF500 0.3110 (0.9, 0.0, 0.1) 0.3399 (0.7, 0.1, 0.2)
0.3106 (0.1, 0.0, 0.9) 0.3388 (0.8, 0.0, 0.2)
0.3106 (0.2, 0.0, 0.8) 0.3386 (0.7, 0.2, 0.1)

SF1000 0.311677 (0.1, 0.0, 0.9) 0.33942 (0.6, 0.1, 0.3)
0.311677 (0.2, 0.0, 0.8) 0.33909 (0.6, 0.2, 0.2)
0.311676 (0.3, 0.0, 0.7) 0.33908 (0.5, 0.2, 0.3)

The severity plot analysis shows that for the recalculated attack on the SF50 network, the combination
of 0.1 weightage for degree centrality, 0.2 weightage for betweenness centrality and 0.7 weightage for
closeness centrality leads to the highest severity. Interestingly, the severity values for this combination
are also relatively high for a range of weightage values, specifically at a weightage of 0.1 for betweenness
centrality and 0.3 for closeness centrality, up to 0.7. This implies that attacks on the SF50 network can
be highly effective when the attacker prioritizes closeness and degree centrality while giving moderate
weightage to betweenness centrality. The result of the recalculated attack in SF100 shows a similar pattern
to SF50, while for SF500 and SF1000, the point of highest severity has shifted to a weightage combination
where the betweenness centrality weightage is high and the closeness centrality weightage is low.

Table 2 outlines the top three weightage combinations associated with the highest severity values
(V-index) for each network when initial and recalculated attacks are performed on it. This table provides
valuable insights into the most effective weightage combinations for network attacks across the studied
networks.

This study highlights the significance of utilizing a hybrid centrality approach to formulate an efficient
attack strategy. The results show that the severity of attacks is high at weightage combinations that do
not solely rely on individual centrality measures. However, further investigation is necessary to recognize
the patterns in which the severity values change with different weightage values across diverse network
topologies. In addition, the optimal weightage combination can be determined by using a grid search
approach [48, 49].

5. Summary

This study investigated the effectiveness of different weightage combinations of degree, betweenness, and
closeness centrality in breaking a network through initial and recalculated attacks on scale-free networks
of various sizes. The results demonstrated that the severity of attacks was highest at points other than
individual centrality measures, underscoring the importance of using a combined centrality approach in
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HYBRID CENTRALITY-BASED NODE ATTACKS IN SCALE-FREE NETWORKS 11

designing effective attack strategies. Furthermore, the highest severity points varied depending on the
network size and weightage combinations, indicating the need for further research to identify patterns in
severity values across different networks. Overall, this study provides valuable insights into the use of
centrality measures for breaking networks and can aid in the development of targeted attack strategies to
weaken networks. We aim to extend this work to encompass a broader spectrum of empirical networks
and real-world network scenarios.
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