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a b s t r a c t

In this work, we study the vulnerability of link-weighted networks against different
central-attack strategies. We simulate simultaneous and sequential attacks on networks
based on three network centralities, viz. degree (DC), betweenness (BC) and closeness
(CC) centralities. We observed two network properties, the disintegration of giant
components and updates in the average geodesic distance, to assess the severity of
attacks. If the severity of attacks is calculated based on the first property alone, BC
and DC-based attacks are the most hazardous. But, if the severity is computed based
on the latter property, the average geodesic distance, the CC-based attacks found to be
equally relevant. We show that sequential attacks based on CC are effective in crippling
link-weighted networks.

Also, suppose that the critical nodes (nodes with high BC and DC) in the network
are protected. In such a circumstance, we show that the fallback strategy based on
profile closeness is indeed a reasonable approach for attacking protected, link-weighted
networks.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A complex network is a dynamically changing network with non-trivial topological features. Such a network encom-
asses a large number of interacting components. But the pattern of those interactions are neither regular nor purely
andom [1–4].

Many a real-world phenomenon are complex systems and they can be modeled as complex networks. To name
few, consider the complex systems such as social systems, transportation systems, distribution systems/logistics,

ommunication systems, epidemic spreading and market dynamics. Complex network-based modeling and studies have
ound to be very effective in understanding the dynamics of such systems. The past decade has seen a rigorous use of
omplex networks as an efficient vehicle to analyze many real phenomenon [4–14].
The robustness of a networked structure depends on its resilient components. While trying to attack a network,

he attackers focus on identifying its vulnerable parts. For example, consider the complex networks such as computer
etworks or terrorist networks or networks modeling spread of epidemics. The strategy of the attacker here is to identify
he vulnerable nodes/ edges/ other components, damage them and break the system.
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This study focuses on network attacks in which the most critical nodes are identified and removed from the network.
Such attacks are called node-removal attacks. The most critical nodes in a network are those which are crucial to the
network structure. These nodes make easy targets for attaining complete network destruction. Network centralities are
good metrics for assessing the importance of a network node. Different variants of centrality measures are devised
and extensively used for this purpose [15–28]. However, the fundamental centrality concepts like degree centrality,
betweenness centrality and closeness centrality effectively identify these highly critical nodes.

Among these critical nodes, attacking nodes with high BC and DC can lead to a faster disintegration of the network.
Therefore, the beneficiaries of the network can be keen on protecting these nodes. Recently, Lekha and Balakrishnan,
in [21], proposed a fallback strategy (a plan B) to attack a network in such a protected environment. They showed that this
new strategy imparts an equal/near-to equal destruction to the network. However, they did not explore the vulnerability
of weighted networks to such attacks. In our work, we also analyze the vulnerability of weighted networks in fallback
strategy and compare them with their binary counterparts.

We need to assess the severity of different attacks on the networks. The most commonly used measure is the
size of the residual giant that remains after each iteration. This part of the residual network adequately represents
the connectivity information of the remaining network. But, as discussed in [21] this metric does not estimate the
communication delays introduced into the system due to attacks. Attacks may destroy shorter communication paths,
which will introduce communication delays between different parts of the network. Giant component size fails to
represent these communication delays. Hence, following [21], we adopt severity measures based on average shortest
path length and residual giant size in our study.

2. Preliminaries

In this study, we focus on undirected and weighted networks. N denotes network size (number of nodes/vertices) and
M denote the number of link/edges in it.

Two nodes u and v are adjacent if there is an edge (u, v) joining u and v. Each edge (u, v) is associated with a weight,
w(u, v). A weight matrix representation W = [wuv] of the network is given by

wuv =

{
w(u, v), if u is adjacent to v

0 otherwise
(1)

The distance between two nodes u and v, denoted by duv is the sum of edge weights in a u− v geodesic, provided the
weight represents a spatial feature. In case the weight represents link strength, it is standard procedure to re-weight the
links using inverse weights.

2.1. Centrality measures

Node centralities adequately measure the significance of a node in the network. There are many variants of centralities,
depending on the criteria used for measuring node relevance.

2.1.1. Degree centrality
The degree centrality of a node v, for a given graph G = (V , E) is defined as

DCv = deg(v) (2)

A related measure in weighted networks is the Strength Centrality SC (Node strength) which is calculated as total weights
of edges incident on the node [29].

Degree centrality is a direct measure which gives insight into the connectivity or ‘popularity’ of a node. However, it
fails to represent the relevance of node’s position in overall network topology.

2.1.2. Betweenness centrality
This variant of centrality measures the significance of a node in enabling network communication. The betweenness

centrality of a node is computed as the fraction of shortest paths going through it. This metric was introduced by Linton
Freeman [30] as a measure of quantifying the control of a person(node) in the communication between other people in
a social network. Freeman defined the betweenness centrality of a node v, BCv as:

BCv =

∑
s̸=v ̸=t

σst (v)
σst

(3)

here σst is the total number of shortest paths from node s to node t and σst (v) is the number of those paths that pass
hrough v.

In weighted networks, the length of a path is the sum of the edge-weights in it.
Removing a node with large betweenness centrality from the network may lengthen many geodesics in it. Therefore,

etweenness centrality gives a direct measure for a node’s potential to control network-flow.
2
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.1.3. Closeness centrality
The closeness centrality of a node v, CCv , is defined as

CCv =
1∑

u d(u, v)
(4)

where d(u, v) is the shortest distance between u and v.
A node with maximum closeness centrality is the one which require minimum intermediaries to contact all other

nodes in the network. Thus CCv gives an indirect measure of the time required to spread information from v to the entire
network.

Newman [31] generalized the concept of closeness to weighted networks. He used Dijkstra’s algorithm to find the
shortest path in weighted networks.

The closeness centrality is not applicable for disconnected graphs.

2.1.4. Profile closeness centrality
Profile closeness is used to identify the nodes that are close to a particular set of nodes defined as a profile [21]. Let

π denote the profile containing a set of nodes then the profile closeness of node u is defined as

PCu(π ) =
1

Du(π )
(5)

where Du(π ) =
∑

|π |

v=1 duv .
A profile closeness center is a node with maximum PCu. We denote the set of all such nodes as PC .

.2. Node-removal attacks in complex networks

Complex networks are resilient towards node-removal attacks, if the target nodes are chosen at random. However, if
n attacker can identify the perilous nodes in a network, and remove/damage them, then the robustness of the network
ay be compromised. This fragility of network owes to the criticality of the chosen attack targets [19,32,33]. Severity of
uch an attack depends on the minimum fraction of nodes to be removed for collapsing the entire network. Quite a few
ode-removal strategies has been suggested in literature [15,19,32,33]. In our work, we focus on the selecting the target
odes based on their centrality measures. We call such a node-removal strategy, a central attack.

.2.1. Random attacks vs central attacks
In random attacks, the targets are selected randomly; while in central attacks, the attacker has to identify the most

entral nodes and attack them. A much effortless approach is to identify the nodes which have large number of con-
ections (high-degree nodes) and remove them. This will leave the network crippled. [15,33] Nevertheless, betweenness
entrality and closeness centrality were also proven to be highly effective in causing an expeditious destruction to the
etwork [19,20,23,34].

.2.2. Simultaneous attacks vs sequential attacks
In any central attack strategy, we need to catalog the nodes based on their centrality values. We can then choose the

argets in the descending order of their values. First targets are the most central nodes. If the network is not collapsing
fter the first attack, we can continue attacking the nodes of lesser centrality, until the network is completely destroyed.
his fashion of attacking the nodes in a pre-calculated order of their centrality values, is known as a simultaneous (initial)
ttack [15,19].
On the other hand, after each attack, the network topology may change and the centrality values will be updated. In

uch a scenario, the pre-calculated values of centrality may no longer remain valid. Here, we can recalculate the centrality
f remaining nodes and regrade the targets. Such a strategy is known as a sequential (recalculated) attack strategy [19].

.3. Network attributes

The important network attributes that are useful to characterize the behavior of network are mentioned below.

• Average degree of a network

∆ =
1
N

N∑
i=1

δi (6)

• Local clustering coefficient of a node is the ratio of the number of edges between its neighbors to the number of
maximum possible edges between them [35]. Let ni denote the number of neighbors of i and µi denote the number
of edges between them. Then

γi =
2µi (7)
ni(ni − 1)
3
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• Global clustering coefficient of a network is the average of all γi-s [35].

γ =
1
N

N∑
i=1

γi (8)

2.4. Vulnerability measures

The effectiveness of an attack can be measured in various ways. In this work, we focus on the following metrics to
compute the severity of an attack.

• The fraction of nodes removed by k attacks
It is denoted as ρk and is defined as

ρk =
Rk

N
(9)

where Rk is the number of nodes removed by k attacks and N denote the total number of nodes The fraction of nodes
to be removed to destruct the network completely is known as the critical fraction, ρcritical. It is used to assess the
vulnerability of the network towards attacks. [36–38]

• Fraction of nodes in the giant component after k attacks:
It is defined as

νk =
Gk

N
(10)

where Gk denotes size of the giant component in residual network after k attacks [26,36]
• Diameter of a network is the length of largest geodesic in it. Diameter is given by

ℓmax =
N

max
i,j=1

dij, i ̸= j (11)

Diameter is a good measure of time delay in communication among nodes in a network [5,39,40]
• Average shortest path length of a network is given by [19]

ℓ =
1

N(N − 1)

N∑
i=1

N∑
j=1

dij, i ̸= j (12)

If ℓ is large, then the efficiency of information dissemination in the network is low. In social networks, ℓ ∝

log(N) [41]. ℓk denotes the updated ℓ after kth attack.
• Critical geodesic distance ℓcritical is the maximum value of average geodesic distance in the attacks. [21]

ℓcritical =
T

max
k=1

ℓk (13)

• Severity of an attack strategy

λ =
ℓcritical − ℓinit

ℓinit
(14)

where ℓinit is the ℓ of the original network and ℓcritical is the ℓ at critical point. If λ > 0 then we call the attack k at
which ℓk = ℓcritical as a critical attack [21].

3. Related literature

In this paper, we focus on targeted node removal attacks in weighted networks. A targeted attack can pose higher risks
by compromising the network structure than a random attack [17,20,22,42]. The targets considered in our work are the
network hubs based on centrality. As discussed earlier, centrality of a node determines its relevance in the entire network
structure and behavior. Here, we use four centrality measures – Degree centrality, Betweenness centrality, Closeness
centrality, Profile closeness centrality – in weighted as well as unweighted cases. We consider two types of attacks as
well; simultaneous (initial) attacks and sequential (recalculated) attacks.

In 2000, Broder et al. [15] studied the impact of initial degree attack strategy(ID removal) on the resilience of web
graphs. In the same year, Albert et al. [33] used recalculated degree attack(RD removal) to study the tolerance of scale-
free networks. Later, Holme et al. [19] conducted a study on the vulnerability of real and synthetic networks based on
recalculated betweenness centrality attack (RD removal) and compared it with the different attacking strategies like
ID, IB, and RD. The sensitivity of the size of largest connected component is an important measure of vulnerability of
network [7,43]. Nguyen et al. [23] suggested a modification on the classical recalculated betweenness centrality attacks
by the condition that in every iteration it will consider the highest betweenness center in the largest connected component
4
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LCC) for removal. They analyzed the efficacy of these new criteria on various networks and found it is consistently
fficient. Nie et al. [25] introduced a new metric combining degree centrality and betweenness centrality to select the
argets of attack and observed that the efficiency of these strategies are higher than the traditional approaches. Comparison
f attack strategies based on various centrality measures have been studied in [22,27,28,44,45].
Very recently, Lekha and Balakrishnan [21] introduced the PC attack (Profile closeness attack) in which the attack is

erformed on the nodes closer to the highly critical and (hence) protected nodes. The high profile nodes include degree
enters and betweenness centers because they are the essential targets of node-removal attacks [27]. However, they
nvestigated this attack strategy on unweighted networks. In our work, we extend this analysis to weighted networks.
e experiment on both empirical and real-world networks with initial and recalculated attacks. Also, we compare the

esults in binary and weighted networks.
Most of the studies on network attacks in the last two decades were focused on binary models in which the link

eights are either absent or ignored [46]. Bellingeri et al. [47,48] proved that neglecting the weighted structure of complex
etworks may produce misleading models to forecast the system’s response to node failure. Hence the study on the
obustness of weighted networks is very relevant. The impact of node removal attacks on weighted networks is studied
n [49,50]. Nguis yen et al. [23] introduced a new nodes attack strategy removing nodes with the highest conditional
eighted betweenness centrality (CondWBet).
Like the node removal attacks, link removal attacks also is a prominent area of research in complex networks. Studies

n various strategies for link removal attacks can be found in [8,19,51].
Different metrics are used for the quantitative assessment of network vulnerability. The size of the giant residual

omponent in the attacked network (LCC) [19,20,32], is the most prevalent measure. Another measure is average inverse
eodesic length, ℓ−1) [19], which was better named as network efficiency (Eff ) [46,52]. While LCC is a simple indicator
valuating the binary-topological connectivity of network nodes, Eff uses the underlying link weights structure to account
or the network information delivery rate in the network [24].

. Methodology

We performed simulations of simultaneous and sequential attacks on synthetic and empirical networks. Twelve
ynthetic networks were constructed based on three network models, viz. random networks, small-world networks, and
cale-free networks. Six real-world networks were also chosen for our study. We ran simulations of attacks on binary as
ell as weighted versions of these networks. Details of the network creation, network properties and simulations follow.

.1. Construction of synthetic networks

We constructed random networks using the Erdös–Rényi model (E–R Model), small-world networks using the
atts–Strogatz model (W–S model) and scale-free networks using the Barabási–Albert model (B–A Model).
Since there are no default models that generate weighted network, we first generate binary networks with above

entioned models and then assigns a positive weight to each of its links based on some criteria. An analysis of various
eighing approaches used in literature are discussed in [53].
In this paper we use two different strategies to assign weight for links in synthetic networks.

ethod 1 Randomly assigning weights to the links.

ethod 2 Clustering coefficient describes the tendency to form clusters. In our study, we consider the largest connected
component as a parameter to measure the robustness of network. Hence, we adopt the weighing approach
suggested by Zhu et al. [54] to use normalized clustering coefficient as a weighting scheme.

In this approach, for an edge (u,v) in G = (V , E) the weight of (u, v),

w(u, v) =
SCN(u,v)

(SNu) × (SNv)
(15)

where SCN(u,v) is the sum of the clustering coefficient of the common neighbors shared by u and v. SNu, and SNv

denote the sum of the clustering coefficients of all the neighbors of u and v respectively.

In this calculation we found that many edges have turned up with zero weight which leads to confusion in the
calculation of betweenness. So, a very small value was added to the w(u,v) to overcome this difficulty.

A summary of the network properties for unweighted and weighted networks generated (both methods) is shown in
Appendix: Table 6, Tables 7 and 8.
5
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.2. Identification of empirical networks

We considered four empirical networks of different sizes whose characteristics are detailed below.

ame of Thrones co-appearances (GoT): Network of co appearances of characters in the Game of Thrones series, by
George R. R. Martin, and in particular co appearances in the book "A Storm of Swords’’. Nodes are unique characters,
and edges are weighted by the number of times the two characters’ names appeared within 15 words of each other
in the text [55].

uman brain functional coactivations (BR): A parameterizable consensus brain graph, derived from connectomes of
477 people, each computed from MRI datasets of the Human Connectome Project. Nodes are brain regions, and
edges are weighted by the number of ‘‘tracks’’ that run between two nodes [56].

US airport network (US): Network of flights among the 500 busiest commercial airports in the United States, in 2002.
Weights represent the number of seats available on the flights between a pair of airports [57]

Scientific collaborations in network science (SCN): A co-authorship network among scientists working on network
science, from 2006. In this network, the scientists represents nodes and the times of co-authorships are taken as
weight of the link [3]. This network is a one-mode projection from the bipartite graph of authors and their scientific
publications [58].

Central Chilean power grid (CPW): The data set includes the connection structure of the real Central Chilean power
grid. It includes the detailed attributes of each component of the power grid such as power plants, substations,
towers, and taps that act as nodes and the transmission lines are the links. This network consist of 347 nodes(124
plants, 94 substations, 85 junctions (branch points), and 44 tap nodes) and 444 edges. The distance of transmission
line is taken as the weight [59].

Messel Shale food web (MSFW): A network of feeling links among taxa based on the 48 million years old uppermost
early Eocene Messel Shale. Here, edge weight denotes the certainty of the edge [60].

Appendix: Tables 9 and 10 summarizes the network properties — Number of nodes N , Size of largest connected
component LCC , Average shortest path length ℓ, Diameter ℓmax, Average degree ∆, and Average clustering coefficient
γ - of unweighted and weighted empirical networks respectively.

The edge weights in five networks GoT, BR, US, SCN and MSFW, represent the link strength. As the link strength
increases, the distance between the nodes connected by the link decreases. Hence, we consider the reciprocal edge weights
as the distance for calculating the network properties and the weighted shortest path. An exception is the power grid
network, CPW, where the edge weight represents the actual distance between nodes. Therefore, in the case of the CPW
network, we used edge weight as the distance to calculate the weighted shortest path.

To avoid the anomaly, we normalized the distances by dividing them by the minimum distance so that the smallest
normalized distance between any two nodes is one.

4.3. Performing initial attack

We perform random attacks by selecting the nodes randomly and removing them until the whole network break
down. For central attacks, our strategy is to calculate degree/ betweenness/ closeness centrality based on which we rank
the target nodes. For PC attacks, we consider the union of degree centers (DC) and betweenness centers (BC) as the profile
and compute profile closeness for each node. Based on this value, we rank the target nodes.

π = BC ∪ DC . (16)

Once nodes are ranked, we perform initial attack (simultaneous attack) by removing them one-by-one from the network
until the structure disintegrates completely. The response of each network to these attacks are plotted for comparison.

4.4. Performing recalculated attack

After each attack (node removal), the network undergoes structural changes. So the centrality values also change. In
recalculated attacks (sequential attacks), we recalculate the centralities and re-rank the nodes after each attack. That is,
the targets are revised after each iteration. Even though this strategy is more cost-consuming than simultaneous attack, it
is more efficient and realistic. After performing the attacks, the severity of attack in each network is plotted and compared.
6
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able 1
everity of simultaneous and sequential attacks on unweighted synthetic networks.
Synthetic networks λ

BC DC CC PC Random

Erdos–Renyi (N = 1000) 0.002 0.097 0.005 0.571 0.002
0.003 0.070 0.003 0.007 0.002

Erdos–Renyi (N = 500) 0.004 0.072 0.014 1.014 0.004
0.004 0.041 0.006 0.025 0.004

Erdos–Renyi (N = 100) 0.020 0.088 0.088 1.639 0.020
0.020 0.045 0.045 0.735 0.020

Erdos–Renyi (N = 50) 0.041 0.164 0.164 4.167 0.041
0.042 0.116 0.112 2.174 0.041

Barabasi–Albert (N = 1000) 0.002 0.101 0.007 0.414 0.002
0.002 0.031 0.003 0.016 0.002

Barabasi–Albert (N = 500) 0.004 0.141 0.014 0.541 0.004
0.005 0.057 0.006 0.017 0.004

Barabasi–Albert (N = 100) 0.028 0.549 0.0425 0.193 0.023
0.056 0.366 0.047 0.0516 0.024

Barabasi–Albert (N = 50) 0.090 0.485 0.068 0.202 0.077
0.172 0.472 0.184 0.141 0.061

Newman–Watts–Strogatz (N = 1000) 0.005 0.032 0.004 1.034 0.002
0.006 0.032 0.006 0.021 0.002

Newman–Watts–Strogatz (N = 500) 0.010 0.042 0.009 0.980 0.004
0.012 0.042 0.012 0.032 0.005

Newman–Watts–Strogatz (N = 100) 0.038 0.094 0.04 1.449 0.021
0.046 0.109 0.051 0.228 0.022

Newman–Watts–Strogatz (N = 50) 0.075 0.155 0.107 3.846 0.050
0.097 0.182 0.098 1.923 0.047

Table 2
Severity of simultaneous and sequential attacks on weighted synthetic networks in which weight is assigned based on clustering coefficients.
Weighted synthetic networks λ

BC DC CC PC Random

Erdos–Renyi (N = 1000) 0.002 0.002 0.002 0.144 0.002
0.002 0.002 0.002 0.004 0.002

Erdos–Renyi (N = 500) 0.004 0.004 0.005 0.324 0.004
0.004 0.004 0.004 0.013 0.004

Erdos–Renyi (N = 100) 0.027 0.027 0.041 0.510 0.022
0.035 0.038 0.034 0.101 0.219

Erdos–Renyi (N = 50) 0.063 0.073 0.070 0.289 0.059
0.117 0.108 0.086 0.120 0.055

Barabasi–Albert (N = 1000) 0.002 0.002 0.002 0.074 0.002
0.002 0.002 0.002 0.004 0.002

Barabasi–Albert (N = 500) 0.004 0.004 0.004 0.091 0.004
0.005 0.004 0.005 0.011 0.004

Barabasi–Albert (N = 100) 0.032 0.022 0.026 0.032 0.025
0.052 0.026 0.048 0.072 0.025

Barabasi–Albert (N = 50) 0.082 0.072 0.080 0.205 0.083
0.229 0.472 0.161 0.199 0.077

Newman–Watts–Strogatz (N = 1000) 0.004 0.004 0.004 0.255 0.002
0.006 0.010 0.005 0.010 0.002

Newman–Watts–Strogatz (N = 500) 0.008 0.007 0.007 0.247 0.004
0.012 0.014 0.009 0.024 0.004

Newman–Watts–Strogatz (N = 100) 0.032 0.028 0.031 0.238 0.021
0.055 0.042 0.037 0.041 0.025

Newman–Watts–Strogatz (N = 50) 0.051 0.054 0.056 0.205 0.045
0.079 0.074 0.0717 0.090 0.044

4.5. Severity checking

As discussed in Section 1, we tracked the updates on LCC, diameter ℓmax and average shortest path length ℓ for every
ttack. We computed severity (λ) of attacks based on the changes in ℓ (Refer Eq. (14)). Tables 1–3 gives the comparison
f λ values of central attacks on unweighted, random-weighted and clustering-based weighted networks respectively.
irst row for each network shows the values for simultaneous attacks and second row shows them for sequential attacks.
ables 4 and 5 gives the λ values of central attacks on weighted and unweighted empirical networks respectively.
7



Divya P.B., D.S. Lekha, T.P. Johnson et al. Physica A 590 (2022) 126667

T
S

able 3
everity of simultaneous and sequential attacks on randomly weighted synthetic networks.
Weighted synthetic networks λ

BC DC CC PC Random

Erdos–Renyi (N = 1000) 0.0022 0.0020 0.0020 0.0024 0.0020
0.002 0.002 0.002 0.007 0.002

Erdos–Renyi (N = 500) 0.0043 0.0041 0.0040 0.0052 0.0040
0.004 0.004 0.004 0.013 0.004

Erdos–Renyi (N = 100) 0.0273 0.0295 0.0234 0.0279 0.0227
0.035 0.034 0.031 0.045 0.023

Erdos–Renyi (N = 50) 0.076 0.075 0.058 0.054 0.054
0.119 0.092 0.099 0.085 0.059

Barabasi–Albert (N = 1000) 0.0021 0.0020 0.0020 0.0022 0.0020
0.0021 0.0020 0.0021 0.0095 0.0020

Barabasi–Albert (N = 500) 0.0043 0.0040 0.0040 0.0044 0.0041
0.0046 0.0042 0.0044 0.0157 0.0040

Barabasi–Albert (N = 100) 0.0279 0.0248 0.0233 0.0232 0.0241
0.0453 0.0305 0.0413 0.0571 0.0234

Barabasi–Albert (N = 50) 0.0916 0.0906 0.0608 0.0509 0.0765
0.2959 0.1388 0.1724 0.2146 0.0746

Newman–Watts–Strogatz (N = 1000) 0.0037 0.0046 0.0025 0.0026 0.0022
0.0061 0.0052 0.0058 0.0057 0.0022

Newman–Watts–Strogatz (N = 500) 0.0072 0.0094 0.0050 0.0048 0.0045
0.0120 0.0106 0.0110 0.0096 0.0043

Newman–Watts–Strogatz (N = 100) 0.0337 0.0393 0.0258 0.0234 0.0223
0.0519 0.0476 0.0452 0.0367 0.0210

Newman–Watts–Strogatz (N = 50) 0.0536 0.0671 0.0529 0.0469 0.0464
0.0892 0.0794 0.0794 0.0499 0.0501

Table 4
Severity of simultaneous and sequential attacks on unweighted empirical networks.
Unweighted empirical networks λ

BC DC CC PC Random

GoT Network (N = 107) 0.057 0.109 0.066 0.748 0.021
0.090 0.107 0.083 0.314 0.022

BR NetWork (N = 480) 0.029 0.094 0.034 0.446 0.005
0.092 0.096 0.080 0.293 0.005

US Network (N = 500) 0.026 0.039 0.021 1.016 0.005
0.044 0.042 0.036 0.516 0.005

SCN Network (N = 1461) 0.265 0.489 0.115 1.047 0.038
0.525 0.436 0.477 0.547 0.040

CPW Network (N = 347) 0.045 0.049 0.022 0.323 0.014
0.133 0.266 0.104 0.198 0.012

MSFW Network (N = 700) 0.004 0.004 0.006 1.273 0.003
0.006 0.019 0.006 0.066 0.003

Table 5
Severity of simultaneous and sequential attacks on weighted empirical networks.
Weighted empirical networks λ

BC DC CC PC Random

GoT Network (N = 107) 0.07 0.064 0.038 0.026 0.020
0.086 0.069 0.073 0.034 0.022

BR NetWork (N = 480) 0.022 0.042 0.023 0.025 0.006
0.079 0.044 0.071 0.044 0.006

US Network (N = 500) 0.033 0.009 0.016 0.012 0.005
0.038 0.013 0.022 0.011 0.005

SCN Network (N = 1461) 0.243 0.084 0.093 0.102 0.029
0.433 0.171 0.332 0.236 0.037

CPW Network (N = 347) 0.038 0.022 0.013 0.008 0.018
0.113 0.046 0.048 0.038 0.013

MSFW Network (N = 700) 0.004 0.004 0.004 0.188 0.003
0.005 0.009 0.005 0.019 0.003
8
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Fig. 1. Comparison of severity (λ) of different attack strategies in binary random networks of sizes 50, 100, 500 and 1000.

Fig. 2. Comparison of severity (λ) of different attack strategies in binary scale free networks of sizes 50, 100, 500 and 1000.

4.6. Results

This section investigates the effect of different attacks on the link-weighted networks and their binary equivalents.

4.6.1. Results in unweighted synthetic networks
Fig. 1 shows the severity of central attacks in different E–R networks. Figs. 1(a) and 1(b) show that PC attacks have

higher λ values.
Fig. 2 shows attack severity in scale-free networks. Figs. 2(a) and 2(b) show that the λ severity is very high for PC

attacks. Also, simultaneous attacks are more severe than sequential attacks.
Fig. 3 shows the severity of different central attacks in small world networks. Simultaneous PC attacks are shown to

have high λ, and comparable to DC attacks (See Fig. 3(a)).

4.6.2. Results in random-weighted synthetic networks
Fig. 4 shows the severity of central attacks in different weighted E–R networks. Figs. 4(a) and 4(b) show that PC attacks

have higher λ values. BC& DC attack also prominent in sequential attacks. PC attacks are severe in sequential case.
Fig. 5 shows attack severity in weighted scale-free networks. Figs. 5(a) shows that the λ severity is very high for DC

attacks in simultaneous case. In the case of sequential attacks also, BC attack was found to be hazardous.
Fig. 6 shows attack severity in weighted small world networks. In simultaneous λ severity is almost same for all attacks

in networks of higher size . Also BC attacks also has prominence in some networks. See Fig. 6(a). And, severity of sequential
PC attacks is only slightly higher than its BC/ DC counterparts.
9
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Fig. 3. Comparison of severity (λ) of different attack strategies in binary small world networks of sizes 50, 100, 500 and 1000.

Fig. 4. Comparison of severity (λ) of different attack strategies in random-weighted E–R networks of sizes 50, 100, 500 and 1000.

4.6.3. Results in clustering-weighted synthetic networks
Fig. 7 shows the severity of central attacks in different weighted E–R networks. Figs. 7(a) and 7(b) show that PC attacks

ave higher λ values. BC& DC attack also prominent in sequential attacks. PC attacks are severe in simultaneous case.
Fig. 8 shows attack severity in weighted scale-free networks. Figs. 8(a) shows that the λ severity is very high for PC

attacks in simultaneous case. In the case of sequential attacks also, PC attack was found to be hazardous. However, BC
and DC attacks were also having comparable effect in some networks.

Fig. 9 shows attack severity in weighted small world networks. λ severity of simultaneous PC attacks is very high in
these networks. See Fig. 9(a). And, severity of sequential PC attacks is only slightly higher than its BC/ DC counterparts.
his result is similar to what we have observed in weighted scale-free networks.

.6.4. Results in real networks
Fig. 10 shows the severity of different central attacks in real world networks. We can see that the severity of both

imultaneous and sequential PC attacks is very high.
Unlike in synthetic networks, CC attacks show considerable effect on weighted real-world networks. See Fig. 11. BC

attack is most hazardous among the sequential/ recalculated attacks. See Fig. 11(b).

5. Analysis and discussion

We simulated simultaneous and sequential attacks on networks based on three network centralities, viz. degree (DC),
betweenness (BC) and closeness (CC) centralities, and a different centrality approach known as profile closeness (PC). We
10
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Fig. 5. Comparison of severity (λ) of different attack strategies in random-weighted scale free networks of sizes 50, 100, 500 and 1000.

Fig. 6. Comparison of severity (λ) of different attack strategies in random-weighted small world networks of sizes 50, 100, 500 and 1000.

observed two network properties, the disintegration of giant components and updates in the average geodesic distance,
to assess the severity of attacks. Our major findings based on the results of simulations are as follows:

• Relevance of CC attacks in weighted networks: BC and DC-based attacks are the most hazardous when the severity
of attack is measured on the basis of LCC, a topological property. But, if the severity is computed based on the
average geodesic distance, the CC-based attacks found to be equally relevant. We show that sequential attacks
based on CC are effective in crippling link-weighted networks. This observation indicates that a CC attack can induce
delayed communications into the network system and hence cripple the coordination within obnoxious networks
like terrorist networks.

• Fallback strategy in protected, weighted networks: When the critical nodes (nodes with high BC and DC) in the
network are protected, we show that the fallback strategy based on profile closeness is indeed a reasonable approach
for attacking protected, link-weighted networks. When PC attacks were introduced in [21], it was established
that this strategy is better when the most critical parts (BC , DC) of a binary network are protected. In our work,
we experimented similar attacks on weighted networks. Here also, similar results were observed in the case of
simultaneous attacks. But, in the case of sequential attacks, the severity of PC attack is only comparable to that of
BC and DC attacks.

• Significance of simultaneous PC attacks: From literature, we know that recalculated attacks are more realistic and
have severe effect on networks than initial attacks. But, from our results (see Fig. 12), this is not true in the case of
PC-based attacks.
11
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Fig. 7. Comparison of severity (λ) of different attack strategies in clustering-weighted random networks of sizes 50, 100, 500 and 1000.

Fig. 8. Comparison of severity (λ) of different attack strategies in clustering-weighted Scale Free networks of sizes 50, 100, 500 and 1000.

Fig. 9. Comparison of severity (λ) of different attack strategies in clustering-weighted small world networks of sizes 50, 100, 500 and 1000.
12
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Fig. 10. Comparison of severity (λ) of different attack strategies in 6 different binary real world networks.

Fig. 11. Comparison of severity (λ) of different attack strategies in weighted real world networks.

In PC-attacks, we are considering our targets as the nodes having more access to a prominent fraction (here, BC and
DC of network) of the network. This prominent fraction of nodes also change in each iteration of attack. So we need
to re-identify the high-profile nodes and recompute the closeness to this set of nodes to find our targets in each
iteration. However, after each iteration the connectivity of remaining network will be lesser and hence finding the
nodes closer to the high-profile ones will not be relevant. Hence, we cannot assume that PC attacks behave in the
same manner as other central attack strategies.
However, this behavior happens to be advantageous since the recalculated PC attacks are very costly to execute. So,
simultaneous PC attack is a better choice when we need to impart maximum destruction to a protected network
and when we have difficulty in accessing network information after an attempt of attack. This can be considered as
equivalent to a one-time effort on attempting attacks on a protected network.

• Extrapolating results from network models: Another prime observation is that CC attacks were not having
considerable effect in the case of weighted synthetic networks. See Appendix: Figs. 13, 14, 15, and 16. On the contrary,
CC attacks were found to be instrumental in increasing the geodesics in weighted real-world networks. See Appendix:
Figs. 19, 20, 21, and 22. This inconsistency in results demonstrates that the study on synthetic network models alone
cannot be generalized to give an adequate representation of real-world systems.

• Dependence of attack severity on link weights: In weighted networks where weight is a direct measure of the
connectivity, as in GoT, BR, NS and CPW networks, different strategies have highly varying severity. If the weight is
not a direct measure of connectivity, as in US and MSFW networks, the severity is almost same irrespective of the
strategy adopted.
13
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Fig. 12. Comparison of severity (λ) of initial and recalculated PC attacks in unweighted and weighted real world networks.

6. Summary

Identifying the most influential components (nodes or links) of a network is vital for its analysis. An attack on these
components may alter the entire network structure. However, the impact of destructing different parts varies with their
influence on the network as a whole. Centrality is a network notion which can measure this influence. There are different
types of centrality measures.

The study of centrality-based attacks remains relevant in many application-areas like epidemic spreading, terrorist
communication network, and fake news alerts. Pertinent many studies are centered on the connectivity between different
network entities. However, a more sensible approach is to include all relevant details about the entity relationships.
Edge-weighted networks are thus more realistic representations for real-world systems.

We analyzed the relevance of central attacks and a fallback attack strategy in weighted networks. We calculated the
severity of attacks based on average geodesics since this measure gives information about the communication delays that
can be implanted into a system. Using this metric, we established the relevance of sequential CC attacks in weighted
networks. Also, we state that the fallback approach is suitable for protected weighted networks as a one-time attack
strategy.
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Fig. 13. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted Game of Thrones co appearances Network.
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Fig. 14. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted Brain network.
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Fig. 15. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted Scientific Collaborations in Network Science.
17



Divya P.B., D.S. Lekha, T.P. Johnson et al. Physica A 590 (2022) 126667
Fig. 16. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted US Airport network.
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Fig. 17. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted Central Chilean Power Grid (CPW) network.
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Fig. 18. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
unweighted Messel Shale Food Web (MSFW) network.
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Fig. 19. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted Game of Thrones co appearances Network.
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Fig. 20. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted Brain network.
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Fig. 21. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted Scientific Collaborations in Network Science.
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Fig. 22. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted US Airport network.
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Fig. 23. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted Central Chilean Power Grid (CPW) network.
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Fig. 24. Comparison of updates in LCC, average shortest path length and diameter against ρ, fraction of nodes removed, in central attacks on
weighted Messel Shale Food Web (MSFW) network.
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roperties of unweighted synthetic networks.
Network N LCC ℓ ℓmax ∆ γ

Erdos–Renyi Model

1000 1000 3.26 5 9.904 1.02%
500 500 2.22 3 24.86 4.94%
100 98 3.01 6 5.04 4.91%
50 44 3.79 8 2.72 5.34%

Barabasi–Albert Model

1000 1000 3.49 6 5.98 2.74%
500 500 3.27 5 5.96 5.09%
100 100 2.63 4 5.82 12.59%
50 50 2.30 4 5.64 18.73%

Newman–Watts–Strogatz Model

1000 1000 2.40 3 47.71 52.36%
500 500 2.57 4 24.15 50.06%
100 100 3.85 7 4.78 37.24%
50 50 5.52 12 2.36 3.33%

Table 7
Properties of synthetic networks weighted by clustering coefficient.
Network N LCC ℓ ℓmax ∆ γ

Erdos–Renyi Model

1000 1000 0.003 0.15 9.72 1.48%
500 500 0.0011 0.191 9.63 1.36%
100 99 0.074 3.62 9.96 1.50%
50 49 0.224 3.67 5.55 2.84%

Barabasi–Albert Model

1000 1000 0.006 1.62 3.34 0.284%
500 500 0.016 1.99 3.84 0.40%
100 100 0.15 3.53 4.91 3.13%
50 50 0.10 2.2 5.80 3.65%

Newman–Watts–Strogatz Model

1000 1000 0.0012 0.19 9.87 32.01%
500 500 0.02 .77 9.72 29.95%
100 100 3.37 7.08 8.07 23.93%
50 50 0.115 2.86 0.57 2.11%

Table 8
Properties of synthetic networks weighted randomly.
Network N LCC ℓ ℓmax ∆ γ

Erdos–Renyi Model

1000 1000 0.143 0.38 24.92 2.09%
500 500 0.26 0.66 12.43 2.09%
100 99 0.91 2.85 2.95 2.59%
50 49 1.524 3.7 2.066 4.86%

Barabasi–Albert Model

1000 1000 0.967 2.65 2.97 1.19%
500 500 0.908 2.20 3.02 2.30%
100 100 0.82 2.09 3.003 5.61%
50 50 0.87 2.12 3.07 8.58%

Newman–Watts–Strogatz Model

1000 1000 0.162 0.46 24.01 21.68%
500 500 0.298 0.77 11.91 21.37%
100 100 1.35 2.94 2.46 16.35%
50 50 3.66 8.06 1.43 2.196%

Table 9
Unweighted empirical networks.
Network N LCC ℓ ℓmax ∆ γ

Game of Thrones co-appearances (GoT) 107 107 2.90 6 6.58 55.14%
Human brain functional co-activations (BR) 480 467 4.92 20 4.24 30.88%
US airport network (US) 500 500 2.999 7 11.92 61.75%
Scientific collaborations in network science (SCN) 1461 379 6.04 17 4.82 74.12%
Central Chilean Power Grid (CPW) 347 347 8.15 23 2.56 8.65%
Messel Shale Food Web (MSFW) 700 700 2.63 6 18.35 10.38%
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T
W

able 10
eighted empirical networks.
Network N LCC ℓ ℓmax ∆ γ

Game of Thrones co-appearances (GoT) 107 107 0.295 0.782 0.903 23.5%
Human brain functional co-activations (BR) 480 467 1.096 6.782 1.283 7.34%
US airport network (US) 500 500 300.46 7162.99 12826.87 0.048%
Scientific collaborations in network science (SCN) 1461 379 11.48 38.388 14.775 25.05%
Central Chilean Power Grid (CPW) 347 347 25398.22 112438 3464.16 0.63%
Messel Shale Food Web (MSFW) 700 700 1.039 3.499 9.84 5.72%
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